Dynamic Delta Modeling

Michiel Helvensteijn
CWI, Amsterdam
Leiden University
The Netherlands
michiel.helvensteijn@cwi.nl

ABSTRACT

Abstract Delta Modeling (ADM) offers an algebraic description of how a (software) product line may be built so that every product can be automatically derived by structured reuse of code. In traditional application engineering a single valid feature configuration is chosen, which does not change during the lifetime of the product. However, there are many useful applications for product lines that change their configuration at run time. We present a new technique for generating efficient dynamic product lines from their static counterparts. We use Mealy machines for their dynamic reconfiguration. Furthermore, we posit that monitoring some features will be more expensive than monitoring others, and present techniques for minimizing the cost of monitoring the system. We stay in the abstract setting of ADM but the techniques can be instantiated to any concrete domain. We illustrate them through the example of a mobile application for Android, which dynamically reconfigures a devices operating profile based on environmental factors.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures; F.1.1 [Theory of Computation]: Models of Computation

General Terms

Theory, Algorithms, Performance

Keywords

Dynamic product lines, delta modeling, Mealy machines, optimization, profile management

This research is funded by the EU project FP7-231620 HATS: Highly Adaptable and Trustworthy Software using Formal Models (http://www.hats-project.eu)

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

1. INTRODUCTION

Delta Modeling [14, 12, 13] is designed as a technique for implementing software product lines [11]: a way to optimally reuse code between software products which differ only by which features they support. The code is divided into units called deltas. Incremental application of a specific set of deltas can transform a core product in order to mechanically generate a specific product from the product line. Each delta has an application condition, which indicates for which combinations of features the delta should be applied. Which combinations of features are legal is expressed through a feature model [2]. Such legal combinations of features are commonly referred to as feature configurations.

Clarke et al. [4,5] described delta modeling in an abstract algebraic setting called the Abstract Delta Modeling (ADM) approach. In that work, delta modeling is not restricted to software product lines, but rather product lines of any domain. It gives a formal description of deltas and how they can be combined and linked to the feature model.

Traditionally, a feature configuration is chosen once at build-time. Its corresponding product is then generated and does not change at runtime. Dynamic (software) product lines [8] are product lines for which the feature configuration is not fixed at runtime. It can change dynamically, in order to meet changing requirements for continuously running systems. Dynamic product lines have already been discussed in the context of delta modeling [6], but only in a concrete object oriented setting (called delta oriented programming).

We now formalize dynamic product lines in the context of ADM. We show how to transform a static product line, as described in [4, 5], into a dynamic product line. It takes the form of a Mealy Machine, a finite automaton with an input symbol and an output symbol on every transition. In our case, the input symbol corresponds to a feature that has been turned on or off and the output symbol corresponds to the delta that has to be applied to the current product in order to bring it up to date.

Based on this representation of dynamic product lines, we introduce a cost model. We assume that monitoring a specific feature for change has a certain cost, and that some features are more costly than others. We then describe how to optimize dynamic product lines by selectively removing transitions from them, effectively disregarding costly features until they become relevant.

We also introduce a novel case study to demonstrate this approach for a concrete domain. To illustrate both dynamic product lines and the versatility of ADM, we do not use a traditional software product line. Instead, we use a profile
manager for modern mobile devices, such as smartphones; a much more common use case these days. By monitoring personal data such as time, location and schedule, a smartphone can automatically adjust its internal settings based on user defined rules. We show that delta modeling and, by extension, dynamic delta modeling, are a natural fit for modeling such rules.

The main contribution of this paper consists of the extension of the ADM formalism to dynamic product lines, the formal treatment of cost and optimization, as well as the formal description of the case study. These are mostly theoretical. A practical evaluation is planned as future work.

The rest of the paper is structured as follows. Section 2 summarizes the relevant theory of ADM. Section 3 introduces our case study, both as motivation and illustration. Section 4 formally treats cost and optimization, as well as the formalization of the ADM formalism to dynamic product lines, the rest of the paper and discusses related and future work.

2. PRELIMINARIES
To make this paper self-contained, we now repeat the relevant theory from ADM. For more detailed information, we refer the reader to [4, 5]. Readers familiar with the theory from ADM. For more detailed information, we refer the reader to [4, 5]. Readers familiar with the theory can skip this section.

2.1 Products and Deltas
Firstly, we assume a set of products, \(\mathcal{P} \). The set of possible modifications to products forms a delta monoid, as follows.

Definition 1 (Delta Monoid). A delta monoid is a monoid \((\mathcal{D}, \cdot, \epsilon)\), where \(\mathcal{D} \) is a set of product modifications (referred to as deltas), and the operation \(\cdot : \mathcal{D} \times \mathcal{D} \rightarrow \mathcal{D} \) corresponds to their sequential composition. \(y \cdot x \) denotes the modification applying first \(x \) and then \(y \). The neutral element \(\epsilon \) of the monoid corresponds to modifying nothing.

Applying a delta to a product results in another product. This is captured by the notion of delta action.

Definition 2 (Delta Action). Delta action is an operation \((\cdot) : \mathcal{D} \times \mathcal{P} \rightarrow \mathcal{P} \). If \(d \in \mathcal{D} \) and \(p \in \mathcal{P} \), then \(d(p) \in \mathcal{P} \) is the product resulting from applying delta \(d \) to product \(p \). It satisfies \((y \cdot x)(p) = y(x(p)) \) and \(\epsilon(p) = p \).

This all leads to the notion of a deltoid, which describes all building blocks necessary to define a product line in a concrete domain.

Definition 3 (Deltoid). A deltoid is a 5-tuple \((\mathcal{P}, \mathcal{D}, \cdot, \epsilon, (\cdot)\)\), where \(\mathcal{P} \) is a product set, \((\mathcal{D}, \cdot, \epsilon)\) is a delta monoid and \((\cdot)\) is a delta action operator.

Finally, we describe a useful notion of expressiveness.

Definition 4 (Maximal Expressiveness). A deltoid \((\mathcal{P}, \mathcal{D}, \cdot, \epsilon, (\cdot)\)\) is said to be maximally expressive iff \(\forall p, p' \in \mathcal{P} : 3x \in \mathcal{D} : x(p) = p' \).

Having this property means that any product can be transformed into any other product by applying the right delta. From this point on, we assume that every deltoid is maximally expressive. This is often true in practice.

2.2 Product Lines
We now formalize the representation of a product line. The following concepts are built upon some deltoid \((\mathcal{P}, \mathcal{D}, \cdot, \epsilon, (\cdot)\)\), which we assume as given in the definitions below.

A product line consists of several ingredients. There is a finite set of relevant features \(\mathcal{F} \). From a delta modeling perspective, these features have no inherent semantic meaning and are treated as labels. It also contains a feature model, as follows:

Definition 5 (Feature Model). A feature model \(\Phi \subseteq \mathcal{P}(\mathcal{F}) \) is a set of sets of features from \(\mathcal{F} \). Each \(F \in \Phi \) is a set of features corresponding to a valid feature configuration, i.e. a set of features that may be active together.

Then, a product line contains a core product \(c \in \mathcal{P} \) and an underlying delta model, the selective application of which to \(c \) should be able to generate any product in the product line. A delta model describes the set of deltas required to build a specific product, along with a strict partial order on those deltas, restricting the order in which they may be applied.

Definition 6 (Delta Model). A delta model is a tuple \((\mathcal{D}, \prec)\), where \(\mathcal{D} \subseteq \mathcal{D} \) is a finite set of deltas and \(\prec \subseteq \mathcal{D} \times \mathcal{D} \) is a strict partial order on \(\mathcal{D} \). \(x \prec y \) states that \(x \) must be applied before \(y \), though not necessarily directly before.

The partial order represents the intuition that a delta applied later has full access to earlier deltas and more authority over modifications to the product.

To link features and deltas, we use application conditions.

Definition 7 (Application Function). Given a set of deltas \(\mathcal{D} \subseteq \mathcal{D} \) and feature model \(\Phi \), an application function \(\gamma : \mathcal{D} \rightarrow \mathcal{P}(\mathcal{F}) \) is used to map each delta \(x \in \mathcal{D} \) to its application condition. An application condition \(\gamma(x) \subseteq \Phi \) determines for which feature configurations delta \(x \) needs to be applied.

In conclusion, a product line describes all possible products, and how to generate them.

Definition 8 (Product Line). A product line is a tuple \((\mathcal{F}, \Phi, c, \mathcal{D}, \prec, \gamma)\) where \(\mathcal{F} \) is a feature set, \(\Phi \subseteq \mathcal{P}(\mathcal{F}) \) is a feature model, \(c \in \mathcal{P} \) is a core product, \((\mathcal{D}, \prec)\) is an underlying delta model and \(\gamma : \mathcal{D} \rightarrow \mathcal{P}(\Phi) \) is an application function.

If some feature configuration \(F \) is valid according to \(\Phi \), its corresponding product can be generated by \(\text{prod}(\mathcal{P}L, F) \), using all elements of the product line. For a detailed description of this process, we refer the reader to [4, 5].

3. CASE STUDY
Traditionally a product line only exists in the development stage [11]. It is a way to efficiently reuse code between otherwise separate products. However, the delta modeling formalism described in Section 2 can be adapted for an entirely different kind of use-case. That of a dynamic product line, a product line which reconfigures itself at runtime.
3.1 Profile Management

The first thing that may come to mind when thinking about dynamic product lines is a software product line with features that can be dynamically turned on and off, based on the personal preferences of who is using the software at the time or because of changing requirements. [8, 6]

While that would be a valid use-case, we choose to go in a different direction in motivating and explaining the research in this paper: profile management on modern smartphones and other mobile devices. This may prove more interesting, as it departs from what a product line is traditionally supposed to be. It is also very relevant these days.

Modern smartphones and tablets, such as those based on Android [7], iOS [1] or Windows Phone [10], have access to a great variety of data with regard to the current circumstances of their user: They know the current time and their current physical location. They know which application the user is currently running, what their scheduled appointments are, and much more. This sort of information can be used to automatically adjust the device's settings. Application conditions represent specific conditions on (environmental) factors monitored by the device. Application conditions correspond to the set of values it is allowed to take on. The basic idea is this: a profile, consisting of a specific configuration of the devices settings, is represented by a product. Deltas can be applied to modify those settings. Features represent specific conditions on (environmental) factors monitored by the device. Application conditions correspond to the set of values it is allowed to take on.

Profile Management

We now formalize these notions by defining a concrete deltoid (Definition 3). Some formerly abstract constructs are refined in this section, such as what a product, a feature and a delta is. Note, however, that the remainder of this paper is still in an abstract setting, and these refinements are only used when referring to Section 3 for illustration.

We start by narrowing down, for a specific device, what it is capable of monitoring and modifying for us:

Definition 9 (Device). A device is a 4-tuple \((FC, S, V, vl)\) where \(FC\) contains the names of the factors that the device is capable of monitoring (e.g. 'time', 'gps location', 'battery status'), \(S\) contains the names of the settings the device controls (e.g. 'volume', 'brightness', 'im status'), \(V\) is the encompassing set of possible values for these factors and settings and \(vl: (FC \cup S) \rightarrow \mathcal{P}(V)\) maps each factor and setting to the set of values it is allowed to take on.

To simplify matters, we assume that \(FC\) and \(S\) are disjoint, although in practice this will not be the case. i.e., we might want to modify the devices settings based on monitoring other settings. This may introduce a host of new challenges that we plan to address in future work.

Each possible device defines a concrete deltoid upon which (dynamic) product lines can be created. From this point on, we assume that some specific device \((FC, S, V, vl)\) is given, and define a deltoid based on that device.

Definition 10 (Profiles). We refine the set of possible products to the set of all possible profiles, mapping settings to values:

\[
P \triangleq S \rightarrow V
\]

such that for each \(p \in P\) and \(s \in S\) we have \(p(s) \in vl(s)\) (Definition 9).

Example 1 (Profile). As an example, consider the following profile:

\[
p_e = \{ \text{‘volume’} \mapsto 10, \text{‘bluetooth’} \mapsto \text{on}, \text{‘brightness’} \mapsto 3, \text{‘foreground app’} \mapsto \text{‘clock’} \}
\]

Since \(S\) is usually quite large, we show only the relevant parts of profiles.

Definition 11 (Profile Deltas). We refine the set of deltas to the set of profile deltas, which modify profiles:

\[
D \triangleq S \rightarrow V
\]

such that for each \(d \in D\) and \(s \in \text{dom}(D)\) we have \(d(s) \in vl(s)\) (Definition 9). \(D\) is similar to \(P\), as both map settings to values, but \(D\) is a partial function. Settings that are not mapped are not modified by the delta. Neutral delta \(\epsilon\) doesn’t map any settings, so it modifies nothing.

Example 2 (Profile Delta). As an example, take the following profile delta:

\[
d_e = \{ \text{‘volume’} \mapsto 5, \text{‘foreground app’} \mapsto \text{‘calendar’} \}
\]

We assume that settings that are not mentioned, are not mapped.

When a delta is applied to a profile, it overwrites that profile’s values.

Definition 12 (Profile Delta Action). Profile delta action \((-\cdot): D \times P \rightarrow P\) is defined as follows, for all \(d \in D\), \(p \in P\) and \(s \in S\):

\[
(d(p))(s) = \begin{cases}
 d(s) & \text{if } s \in \text{dom}(d) \\
 p(s) & \text{otherwise}
\end{cases}
\]

Example 3 (Profile Delta Action). For example, delta \(d_e\) (Example 2) applied to product \(p_e\) (Example 1) results in the following product:

\[
d_e(p_e) = \{ \text{‘volume’} \mapsto 5, \text{‘bluetooth’} \mapsto \text{on}, \text{‘brightness’} \mapsto 3, \text{‘foreground app’} \mapsto \text{‘calendar’} \}
\]

Profile delta composition \(\cdot: D \times D \rightarrow D\) is implicitly defined by Definition 12, and can be seen as function composition. Deltas that are applied later can overwrite settings from deltas that are applied earlier.
3.3 Rule Sets as Product Lines

The idea behind the profile manager application is that the user manually creates a set of rules using the app’s graphical interface, which is then put into effect as a dynamic product line, regulating the devices profiles.

Let us examine the parts of a profile manager product line more closely. Recall that an abstract product line consists of \((F, \Phi, c, D, <, \gamma)\) (Definition 8). In our concrete setting of profile management, \(D, <\) and \(\gamma\) are based directly on user-defined rules. The rest is implicitly derived.

Before we describe the ingredients of such a product line, we refine the notion of ‘feature’ that has to be used:

Definition 13 (Conditions). We restrict the set of features for any product line for a device \((FC, S, V, vl)\) to the set of possible conditions over factors:

\[F \subseteq FC \times P(V) \]

s.t. for each \((fc, V') \in F\) we have \(V' \subseteq vl(fc)\) (Definition 9).

Example 4 (Condition). As an example, consider the following conditions:

\[f_{c1} = (\text{‘time’}, \text{between 9:00 and 17:00}) \]
\[f_{c2} = (\text{‘gps location’}, \text{within 1 km of } [+52° 21′ 23″, +4° 57′ 8″]) \]

Note that these names are mapped to a set of values. A condition is satisfied (a feature is ‘on’) if the actual value is contained within that set.

The user can input rules which include conditions and effects. These form the application function \(\gamma\) (Definition 7) and the delta set \(D\) respectively.

Example 5 (Rule). For example, the rule: “if I am within 1 km of \([+52° 21′ 23″, +4° 57′ 8″]\) and the time is between 9:00 and 17:00, set the volume to 5 and set the calendar application to the foreground” is encoded as follows (using Examples 2 and 4):

\[D \ni d_1 = \{\text{‘volume’} \mapsto 5\} \]
\[D \ni d_2 = \{\text{‘foreground app’} \mapsto \text{‘meeting minutes’}\} \]

A partial order \(<\) can be defined between the deltas to encode rule priority, in order to avoid and resolve conflicts [4, 5]. Basically, a delta can overwrite values of other deltas if it is greater in the partial order.

The other elements of the product line are implicitly derived, as follows. \(F\) contains all conditions that appear in application function \(\gamma\):

\[F = \bigcup_{d \in D} \gamma(d) \]

The feature model \(\Phi\) (Definition 5) is implicitly defined by the conditions in \(F\). Basically, \(\Phi\) consists of all feature configurations that do not contain any contradictory conditions but do contain all implied conditions. Finally, for our profile manager, we assume the core product \(c\) to be the devices profile as the user has manually set it before any deltas are applied. In effect, in \(c\), every value is set to ‘manual’ \(\in V\).

3.4 Example Rule Set

We now give an example set of rules and the corresponding product line:

- If I am within 1 km of \([+52° 21′ 23″, +4° 57′ 8″]\) and the current time is between 9:00 and 17:00 then
 - set ‘volume’ to 5.
- If I currently have a meeting scheduled then
 - set ‘volume’ to 0 and
 - set ‘foreground app’ to ‘meeting minutes’

Note that we need to establish a priority between the two rules, as they might otherwise conflict with each other on the volume setting. These are the deltas:

\[D \ni d_1 = \{\text{‘volume’} \mapsto 5\} \]
\[D \ni d_2 = \{\text{‘foreground app’} \mapsto \text{‘meeting minutes’}\} \]

with \(d_1 < d_2\). And these are the application conditions:

\[\gamma(d_1) = \{F \in \Phi \mid \{t, l\} \subseteq F\} \]
\[\gamma(d_2) = \{F \in \Phi \mid \{m\} \subseteq F\} \]

where

\[t = (\text{‘time’}, \text{between 9:00 and 17:00}) \]
\[l = (\text{‘gps location’}, \text{within 1 km of } [+52° 21′ 23″, +4° 57′ 8″]) \]
\[m = (\text{‘ongoing meeting’}, \text{yes}) \]

Based on this, \(F = \{t, l, m\}\) and the feature model \(\Phi = P(F)\) contains all combinations of conditions, as none of them exclude or imply each other. So there are 8 possible profiles. We will later use this product line for illustration.

4. Dynamic Product Lines

A naive way of turning a static product line \(PL\) into a dynamic product line (DPL), i.e., to dynamically switch from one feature configuration \((F)\) to another \((F')\) and keep the current product consistent with that feature configuration, is to generate the product in the traditional way, namely \(\text{prod}(PL, F')\), each time the feature configuration changes. However, this is rather costly, and can hurt performance. The other extreme is to pre-generate all products, and to continually switch between them. However, the number of possible products can be exponential in the number of features, so this is infeasible for non-trivial product lines.

4.1 Mealy Machines

We represent a DPL as a Mealy Machine. A Mealy Machine is a finite automaton with an input symbol and an output symbol on each transition [3]. We assume that in a DPL the feature configuration changes dynamically by individual features being turned on and off with regard to the current feature configuration. These features are used as input symbols for our Mealy Machine. The output symbols are deltas which, when applied to the current product, yield a new product consistent with the new feature configuration.
Definition 14 (Mealy Machine). A Mealy Machine is represented as a 5-tuple \((S, \Sigma, T, G, F)\) where \(S\) is a set of states, \(\Sigma\) is an input alphabet, \(T\) is an output alphabet, \(T : S \times \Sigma \to S\) maps a state and input symbol onto a next state and \(G : S \times \Sigma \to \Lambda\) maps a state and input symbol onto an output symbol. \(T\) and \(G\) are partial functions but are defined for the same inputs, i.e. \(\text{dom}(T) = \text{dom}(G)\). Sometimes the definition of Mealy Machine includes an initial state, but for us the initial state is not fixed, so we do not include one.

We now introduce some useful notation:

Notation 1 (Symmetric Difference). We’ll often use symmetric difference between sets, which is denoted:

\[F_1 \oplus F_2 \equiv (F_1 \cup F_2) \setminus (F_1 \cap F_2). \]

Notation 2 (Product Difference). Since we assumed our deltoid to be maximally expressive (Definition 4), any product can be transformed into any other by application of the right delta. The delta that transforms \(p\) into \(p'\) is denoted \(p \mapsto p'\):

\[(p \mapsto p')(p) = p' \]

For simplicity, we assume that there is always only one delta transforming a specific product to another.

Finally, we define a dynamic product line as a Mealy Machine with specific states, inputs, outputs and conditions.

Definition 15 (Dynamic Product Line). Given a product line \(PL = (\Phi, F, \Delta, g, \prec)\), we define its dynamic product line as a Mealy Machine \((\Phi, F, D, T, G)\) where:

- Every state is a valid feature configuration in \(\Phi\). From here on we use the terms ‘state’ and ‘feature configuration’ interchangeably for dynamic product lines.
- Every input symbol is a feature in \(F\).
- Every output symbol is a delta in \(D\).
- \(T(\Phi, f) = F \oplus \{f\}\). A feature input is an event that triggers that feature to be added to or removed from the originating state, resulting in a target state.
- \(G(\Phi, f) = \prod(PL, F) \mapsto \prod(PL, T(\Phi, f))\). The output generated by a transition is the delta required to transform the product corresponding to the originating state to the product corresponding to the target state.

\(T(\Phi, f)\) and \(G(\Phi, f)\) are only defined if \(F \oplus \{f\} \in \Phi\).

A dynamic product line has to be generated only once, and can then be run indefinitely. Figure 1 shows a graphical representation of the dynamic product line generated from our Section 3.4 example. Besides the conditions \(t, l, m\) and deltas \(d_1, d_2\) given there, the three extra deltas that appear in the diagram are:

\[d_1' = \{\text{‘volume’ }\mapsto \text{‘manual’}\}, \]
\[d_2 = \{\text{‘volume’ }\mapsto \text{‘manual’}, \text{‘foreground app’ }\mapsto \text{‘manual’}\}, \]
\[d_2' = \{\text{‘volume’ }\mapsto 5, \text{‘foreground app’ }\mapsto \text{‘manual’}\}. \]

Note from Figure 1 that we have entered a very different view of our product line than the one formed in Section 2.2.

We now prove that if you start with a product corresponding to some state, walking any path from that state in the DPL and applying the generated output deltas to that product results in a product consistent with the new state.

Theorem 1 (Product Consistency). Given a dynamic product line \(DPL = (\Phi, F, D, T, G)\) generated from \(PL\). For any two states \(F, G \in \Phi\) and any path \(f_1, \ldots, f_n \in F^*\) such that \(T(\cdots T(F, f_1) \cdots, f_n) = G\), deltas \(d_1, \ldots, d_n \in D^*\) are generated as output such that \(\prod(\Phi, F) \cdots = \prod(PL, G)\).

Proof. Induction on \(n\):

- \(n = 0\). Immediate.
- \(n > 0\). We abbreviate \(\prod(PL, F)\) with \(p(F)\) and \(T(F, f_1)\) with \(F'\) for all \(F \in \Phi\):

\[
\begin{align*}
d_n(d_1 \cdots d_2(& \quad p(F)) &) \cdots & = (\text{Def. } 15) \\
d_n(d_1 \cdots d_2(& \quad G(F, f_1)(p(F)) &) \cdots & = (\text{Def. } 15) \\
d_n(d_1 \cdots d_2(& \quad p(F) \mapsto p(F')(p(F)) &) \cdots & = (\text{Not. } 2) \\
d_n(d_1 \cdots d_2(& \quad p(F') &) \cdots & = (\text{induction}) \\
p(G) & = \prod(PL, G)
\end{align*}
\]

4.2 Event Based Strategy

We first describe the most straight-forward strategy for ‘running’ a DPL. The concepts here are quite traditional, but we focus, we assume now that those have been processed, and how they relate to each other by features and deltas. We now prove that if you start with a product corresponding to some state, walking any path from that state in the DPL and applying the generated output deltas to that product results in a product consistent with the new state.

Whereas there deltas and their partial order were the main focus, we assume now that those have been processed, and we are looking at the different products of the product line, and how they relate to each other by features and deltas. We now prove that if you start with a product corresponding to some state, walking any path from that state in the DPL and applying the generated output deltas to that product results in a product consistent with the new state.
order to compare this strategy to strategies that facilitate multiple features to be triggered simultaneously, we look at it in a slightly different way.

We keep track of the target state \(tfc \in \Phi \). Before the Mealy Machine starts, we set the current state \(cfc \in \Phi \) equal to the target state. The current product \(cp \) is then generated in the traditional static way (Section 2.2):

\[
\begin{align*}
\text{cfc} & \leftarrow \text{tfc} \\
\text{cp} & \leftarrow \text{prod}(\text{PL}, \text{cfc}).
\end{align*}
\]

Then, when the target state changes at runtime, we nonde-
terministically fire an event \(f \) from the difference between current and target state \(\text{cfc} \ominus \text{tfc} \):

1. update the product \(\text{cp} \leftarrow \text{G}(\text{cfc}, f)(\text{cp}) \)
2. set the next state \(\text{cfc} \leftarrow \text{T}(\text{cfc}, f) \)

until the DPL has stabilized, meaning that there is no feature
left to fire.

We need to make sure that any strategy we use results in a new current product consistent with the target state after stabilization.

Definition 16 (Correct Target Product). We say that a certain strategy for running a DPL reaches a correct target product iff whenever \(\text{cfc} \neq \text{tfc} \), the Mealy Machine will stabilize with \(\text{cp} = \text{prod}(\text{PL}, \text{tfc}) \).

Theorem 2. The event based strategy always reaches a correct target product.

Proof. \(\text{cp} \) is consistent with \(\text{tfc} \) after initialization. Then, when \(\text{tfc} \) changes, there is an \(f \) such that \(\text{tfc} = \text{cfc} \ominus \{ f \} \) (Definition 15). Feature event \(f \) is fired, giving \(\text{cp} \leftarrow \text{G}(\text{cfc}, f)(\text{cp}) \) and \(\text{cfc} \leftarrow \text{T}(\text{cfc}, f) = \text{tfc} \). So by Theorem 1, \(\text{cp} = \text{prod}(\text{PL}, \text{cfc}) = \text{prod}(\text{PL}, \text{tfc}) \). □

5. COST AND OPTIMIZATION

In this section, we discuss the cost of dynamic product lines, and the minimization of that cost.

5.1 Cost

We assume that occupying a state in a DPL has a cost: the cost of monitoring the features of the outgoing transitions for change. We posit that monitoring some features will be more expensive than monitoring others. For example, in Section 3.4 it will cost more power to continually monitor the current ‘gps location’ (\(t \)) than it will to monitor the current ‘time’ (\(t \)).

First we introduce some cost domain \(C \) over time (such as power in watt).

Definition 17 (Cost). Given dynamic product line \((\Phi, \mathcal{F}, \mathcal{D}, T, \mathcal{G}) \) we introduce a function cost : \(\Phi \times \mathcal{F} \rightarrow C \). cost(\(F, f \)) expresses the cost of monitoring feature \(f \) from state \(F \). A feature is only monitored from a state if it has an outgoing transition there, so \(\forall (F, f) \notin \text{dom}(T) \) then cost(\(F, f \)) = 0 (the additive neutral element of \(C \)).

In the Section 3 profile manager, we assume that the cost of monitoring a condition depends only on the factor being checked, so we can use a short notation for that: \(\text{cost}(f c) = \text{cost}(F, (fc, V')) \) for all \(F \in \Phi, fc \in FC \) and \(V' \subseteq V \).

Basically, we minimize the cost of a DPL by removing costly transitions, but only where this would not ‘break’ the machine. This means we only need to monitor features when they become relevant. For example, in the Section 3 profile manager, we want to modify the profile when we are in a certain ‘gps location’ (\(t \)) at a certain ‘time’ (\(t \)). Either condition satisfied on its own does not modify the profile. So it makes sense to only start monitoring ‘gps location’ (the more costly factor), when it is already the right ‘time’.

5.2 Optimization

We need to find conditions under which transitions may be removed, as well as an accompanying strategy for walking through a reduced DPL.

We first establish some useful notions. We set up an equivalence relation between different feature configurations that correspond to the same generated product.

Definition 18 (Feature Config. Equivalence). Given a product line \(PL = (\Phi, \mathcal{F}, c, D, \triangleleft, \gamma) \), two feature configurations \(F, G \in \Phi \) are equivalent, denoted \(F \equiv_G \), iff \(\text{prod}(PL, F) = \text{prod}(PL, G) \). When the product line is clear from context, we omit the subscript.

Realize that while running a DPL, by Definition 16, we do not care whether we end up in the exact target state. It is sufficient that we always reach an equivalent state. So this will be a useful notion once we start removing transitions.

In theory it could be enough if a state from every equivalence class remains reachable from every other equivalence class. But the accompanying strategy for walking through it would then have to be some systematic search algorithm in order to locate the new target state every time. We want configuration switches to be swift and a search would be too expensive. So we need some middle ground. We give a possible solution in Sections 5.3 and 5.4.

5.3 Reduced Dynamic Product Lines

We are going to reduce dynamic product lines only so far that we can still reach a target equivalent state by nonde-
terministically firing from a set of available transitions which should be easily calculable:

Notation 3 (Outgoing Transitions). We write the set of outgoing transitions from state \(F \in \Phi \) as:

\[
\text{out}(F) \overset{\text{at}}{=} \{ f \mid (F, f) \in \text{dom}(T) \}
\]

Definition 19 (Available Transitions). For current state \(cfc \in \Phi \) and target state \(tfc \in \Phi \), the set of available transitions is defined as:

\[
\text{at}(cfc, tfc) \overset{\text{at}}{=} (cfc \ominus tfc) \cap \text{out}(cfc)
\]

When walking a DPL from which transitions are removed, it is possible that our path will be blocked, preventing current state \(cfc \) to become equal to target state \(tfc \). This means that even though \(tfc \) will only change by one feature at a time, a gap greater than one feature may appear between the two. So at each state there may be more than one transition available. We give a new transition function which takes a target state, rather than a single feature, and returns the set of possible resulting states. It is defined recursively.
Figure 2: The reduced version of the Figure 1 DPL with equivalence classes marked.

Definition 20 (Target Based Trans. Function).
Given dynamic product line \((\Phi, \mathcal{F}, D, T, G)\), the target based transition function \(T(\cdot, tfc) = \{cfc\} \cup \bigcup_{f \in at} T(T(cfc, f), tfc)\) is defined as:

\[
T(cfc, tfc) = \begin{cases}
\{cfc\} & \text{if } act = \emptyset \\
\bigcup_{f \in at} T(T(cfc, f), tfc) & \text{otherwise}
\end{cases}
\]

where \(act\) is an abbreviation for \(at(cfc, tfc)\).

It represents the set of possible transition sequences from \(cfc\) when targeting \(tfc\). Note that the function always terminates, as the set \(act\) becomes smaller when a step is taken.

We now define what a reduced dynamic product line is:

Definition 21 (Reduced Dynamic Product Line).
The Mealy Machine \(DPL' = (\Phi, \mathcal{F}, D', T', G')\) is a reduced dynamic product line if there is a dynamic product line \(DPL = (\Phi, \mathcal{F}, D, T, G)\) such that:

1. \(\forall (F, f) \in \text{dom}(T') : T'(F, f) = T(F, f)\)
2. \(\forall (F, f) \in \text{dom}(G') : G'(F, f) = G(F, f)\)
3. \(\forall cfc, tfc \in \Phi : \forall F \in T'(cfc, tfc) : F \equiv tfc\)

The first two conditions say that the set of transitions in \(DPL'\) should be a subset of those in \(DPL\). The third makes sure that despite the ‘missing’ transitions, we still always reach a correct target product. Note that by that third condition, we may only remove transitions with \(\epsilon\) output.

Figure 2 shows a reduced version of the dynamic product line of Figure 1 with equivalence classes marked (basically, wherever an \(\epsilon\) transition is or was).

Let us assume that for the device we are considering:

\[
\text{cost('time')} < \text{cost('ongoing meeting')} < \text{cost('gps location')}.
\]

So we would like to get rid of \(l/\epsilon\) transitions first, then \(m/\epsilon\) transitions, then \(t/\epsilon\) transitions, so long as the third condition from Definition 21 continues to hold. As you can see in Figure 2, we were able to remove 10 transitions, significantly reducing the overall cost of the DPL. Intuitively, the transitions between \(2\) and \(l\) could be removed, because the ‘gps location’ does not become relevant until it is the right ‘time’. The other 8 transitions could be removed because \(d2\) completely overwrites the effect of \(d1\), so it does not matter what happens with \(t\) and \(l\) while we are in a scheduled meeting. Profile manager rules often have such properties in practice, so the DPL can often be significantly optimized.

5.4 Target Based Strategy

The strategy of Section 4.2 is most straightforward, but it will no longer reach a correct target product (Definition 16) after we have removed transitions, because we might disregard a feature event when we are not monitoring it, and then neglect to apply it when it does becomes relevant. The solution is to modify our strategy to take this into account, to safely walk a reduced DPL (Definition 21).

The target state \(tfc\) will gradually change by single features being turned on and off, as before. But now the current state \(cfc\) will always try to ‘mimic’ the target feature configuration by generating feature events based on the current difference between the two (Definition 19) and walking the Mealy Machine accordingly. For example, if the current state is \(\{f, g\}\) and the target state is \(\{g, h\}\), the \(f\) and \(h\) events may be triggered in a nondeterministic order until \(cfc = tfc\) or until we are blocked from going any further by missing transitions.

The target based strategy works as follows. Given the reduced dynamic product line \(DPL = (\Phi, \mathcal{F}, D, T, G)\) created originally from product line \(PL\), we first set the initial state \(cfc\) to equal \(tfc\), and its corresponding product \(cp\) is generated in the familiar static way as before:

\[
cfc \leftarrow tfc \\
cp \leftarrow \text{prod}(PL, cfc)
\]

When we start running the DPL, \(tfc\) may change and the set of available transitions \(at(cfc, tfc)\) may become non-empty. When that happens, we initialize an empty delta d:

\[
d \leftarrow \epsilon
\]

and repeat the following until \(at(cfc, tfc)\) is empty again:

1. non-deterministically choose a feature \(f \in at(cfc, tfc)\),
2. compose the resulting delta \(d \leftarrow G(F, f) \cdot d\) and
3. set the next state \(cfc \leftarrow G(F, f) \cdot d\)

This is consistent with the target based transition function from Definition 20.

When \(at(cfc, tfc)\) is once again empty, and the dynamic delta model has stabilized, we apply the accumulated deltas to the current product:

\[
 cp \leftarrow d(cp)
\]

We now prove that the target based strategy always results in a correct target product (Definition 16) for reduced dynamic product lines.

Theorem 3. The target based strategy applied on a reduced dynamic product line always reaches a correct target product.
The proof of this theorem relies heavily on the third condition of Definition 21. Finding an efficient algorithm for deciding whether or not a transition may be removed is future work.

Proof. By initialization, \(cp \) is consistent with \(tfc \) in the beginning. Then, whenever \(tfc \) changes, \(cfc \) will become one of the states in \(T(cfc, tfc) \) after stabilization. By Theorem 1, we have \(cp = prod(PL, cfc) \). By Definition 21, we will have \(cfc \equiv tfc \) and thus \(cp = prod(PL, cfc) = prod(PL, tfc) \).

With an example walk in Figure 2, we show how we can always reach a state equivalent to the one targeted. We start in state \(cfc = tfc = \emptyset \). Say we reach specified gps coordinates before 9:00. Transition \(l \) would be fired, if it were available. As it is, \(cfc = \emptyset \) and \(tfc = \{l\} \). If we then start a scheduled meeting, \(m \) is fired, and \(cfc = \{m\} \) and \(tfc = \{l, m\} \). If the meeting ends (bringing us back to the previous situation), and it becomes 9:00, \(cfc = tfc = \{t, l\} \), because \(t \) and \(l \) both fire. In all cases, we have \(cfc \equiv tfc \), so we always reach the correct product.

6. CONCLUSION

Dynamic Delta Modeling is an extension of Abstract Delta Modeling \([4, 5]\) which includes a formal framework for modeling dynamic product lines. Using Mealy Machines, we accurately describe the behavior of product lines with dynamic feature configurations, while remaining on an abstract level. We have defined a cost-model, and shown an optimization opportunity for certain kinds of dynamic product lines. We have described the practical case-study of profile management on modern mobile devices directly in our formal framework, illustrating the versatility of ADM and the applicability of its dynamic extension.

6.1 Related Work

Hallsteinsen et al. \([8]\) introduce several properties they believe constitute a dynamic software product line. Dynamic Delta Modeling allows several of these, such as ‘dynamic variability’, ‘changes binding several times over lifetime’ and ‘context awareness’, but does not yet model others, such as ‘variation point change during runtime’ and ‘deals with unexpected changes during runtime’. In our approach, even though the current feature configuration can change during runtime, the set of available feature configurations is still fixed at ‘build time’.

Calling the case study from Section 3 a software product line may be a stretch. It bears greater resemblance to a Self Adaptive System (SAS) \([9]\). It is true that, even though ADM was designed from a software product line perspective, its abstract nature makes its dynamic counterpart quite suitable for modeling a SAS (under some of the varied definitions of the term).

Because we are working in an abstract setting, a lot of interesting questions related to dynamic software product lines were not discussed, such as how to manage dynamic switching of features when they extend or reduce data-types, or when to allow a switch so that it does not break normal flow of control. The work of Damiani and Schaefer \([6]\) complements our work in this regard. A Mealy Machine generated by the technique in this paper, in a concrete object oriented setting, may be enriched by their reconfiguration translations, basically embedding a reconfiguration automaton into our DPL, and in that way reconfiguring existing objects in the heap to be consistent with the change in code.

To be fully compatible with their technique, stabilization of the DPL should wait until the \texttt{reconfigure} statement is encountered by the program.

6.2 Future Work

We have made a beginning, but there is plenty of opportunity for future work. Optimization of the dynamic product line is still a complex endeavor, so there is need for an efficient algorithm. Also, we now assume that the target feature configuration can only change by single features being turned on and off and we would like to loosen that restriction, a goal that introduces several complications. On a more concrete level, it would be interesting to enrich the profile manager to allow monitoring – as well as modifying – settings. As delta application would be able to trigger a new feature configuration change, some sort of termination analysis would be required.

7. REFERENCES